PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs

نویسندگان

  • Ping Xuan
  • Maozu Guo
  • Xiaoyan Liu
  • Yangchao Huang
  • Wenbin Li
  • Yufei Huang
چکیده

MOTIVATION MicroRNAs (miRNAs) are a set of short (21-24 nt) non-coding RNAs that play significant roles as post-transcriptional regulators in animals and plants. While some existing methods use comparative genomic approaches to identify plant precursor miRNAs (pre-miRNAs), others are based on the complementarity characteristics between miRNAs and their target mRNAs sequences. However, they can only identify the homologous miRNAs or the limited complementary miRNAs. Furthermore, since the plant pre-miRNAs are quite different from the animal pre-miRNAs, all the ab initio methods for animals cannot be applied to plants. Therefore, it is essential to develop a method based on machine learning to classify real plant pre-miRNAs and pseudo genome hairpins. RESULTS A novel classification method based on support vector machine (SVM) is proposed specifically for predicting plant pre-miRNAs. To make efficient prediction, we extract the pseudo hairpin sequences from the protein coding sequences of Arabidopsis thaliana and Glycine max, respectively. These pseudo pre-miRNAs are extracted in this study for the first time. A set of informative features are selected to improve the classification accuracy. The training samples are selected according to their distributions in the high-dimensional sample space. Our classifier PlantMiRNAPred achieves >90% accuracy on the plant datasets from eight plant species, including A.thaliana, Oryza sativa, Populus trichocarpa, Physcomitrella patens, Medicago truncatula, Sorghum bicolor, Zea mays and G.max. The superior performance of the proposed classifier can be attributed to the extracted plant pseudo pre-miRNAs, the selected training dataset and the carefully selected features. The ability of PlantMiRNAPred to discern real and pseudo pre-miRNAs provides a viable method for discovering new non-homologous plant pre-miRNAs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic algorithm-based efficient feature selection for classification of pre-miRNAs.

In order to classify the real/pseudo human precursor microRNA (pre-miRNAs) hairpins with ab initio methods, numerous features are extracted from the primary sequence and second structure of pre-miRNAs. However, they include some redundant and useless features. It is essential to select the most representative feature subset; this contributes to improving the classification accuracy. We propose ...

متن کامل

MaturePred: Efficient Identification of MicroRNAs within Novel Plant Pre-miRNAs

BACKGROUND MicroRNAs (miRNAs) are a set of short (19∼24 nt) non-coding RNAs that play significant roles as posttranscriptional regulators in animals and plants. The ab initio prediction methods show excellent performance for discovering new pre-miRNAs. While most of these methods can distinguish real pre-miRNAs from pseudo pre-miRNAs, few can predict the positions of miRNAs. Among the existing ...

متن کامل

Improved Pre-miRNA Classification by Reducing the Effect of Class Imbalance

MicroRNAs (miRNAs) play important roles in the diverse biological processes of animals and plants. Although the prediction methods based on machine learning can identify nonhomologous and species-specific miRNAs, they suffered from severe class imbalance on real and pseudo pre-miRNAs. We propose a pre-miRNA classification method based on cost-sensitive ensemble learning and refer to it as MiRNA...

متن کامل

miRLocator: Machine Learning-Based Prediction of Mature MicroRNAs within Plant Pre-miRNA Sequences

MicroRNAs (miRNAs) are a class of short, non-coding RNA that play regulatory roles in a wide variety of biological processes, such as plant growth and abiotic stress responses. Although several computational tools have been developed to identify primary miRNAs and precursor miRNAs (pre-miRNAs), very few provide the functionality of locating mature miRNAs within plant pre-miRNAs. This manuscript...

متن کامل

MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features

To distinguish the real pre-miRNAs from other hairpin sequences with similar stem-loops (pseudo pre-miRNAs), a hybrid feature which consists of local contiguous structure-sequence composition, minimum of free energy (MFE) of the secondary structure and P-value of randomization test is used. Besides, a novel machine-learning algorithm, random forest (RF), is introduced. The results suggest that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 27 10  شماره 

صفحات  -

تاریخ انتشار 2011